
 

Frequency distribution,
cross-tabulation and
hypothesis testing

1 8C H A P T E R

Frequency distribution, cross-tabulation and

hypothesis testing are the fundamental building

blocks of quantitative data analysis. They

provide insights into the data, guide subsequent

analyses and aid the interpretation of results.

After reading this chapter, you should be able to:

1 describe the significance of preliminary data analysis and the

insights that can be obtained from such an analysis;

2 discuss data analysis associated with frequencies, including

measures of location, measures of variability and measures of

shape;

3 explain data analysis associated with cross-tabulations and the

associated statistics: chi-square, phi coefficient, contingency

coefficient, Cramer’s V and lambda coefficient;

4 describe data analysis associated with parametric hypothesis

testing for one sample, two independent samples and paired

samples;

5 understand data analysis associated with non-parametric

hypothesis testing for one sample, two independent samples and

paired samples.

Objectives

Stage 1

Problem definition

Stage 2

Research approach

developed

Stage 3

Research design

developed

Stage 4

Fieldwork or data

collection

Stage 6

Report preparation

and presentation

Stage 5

Data preparation

and analysis



 

Overview

Once the data have been prepared for analysis (Chapter 17), the researcher should con-
duct basic analyses. This chapter describes basic data analyses, including frequency
distribution, cross-tabulation and hypothesis testing. First, we describe the frequency
distribution and explain how it provides both an indication of the number of out-of-
range, missing or extreme values as well as insights into the central tendency, variability
and shape of the underlying distribution. Next, we introduce hypothesis testing by
describing the general procedure. Hypothesis testing procedures are classified as tests of
associations or tests of differences. We consider the use of cross-tabulation for under-
standing the associations between variables taken two or three at a time. Although the
nature of the association can be observed from tables, statistics are available for examin-
ing the significance and strength of the association. Finally, we present tests for
examining hypotheses related to differences based on one or two samples.

Many marketing research projects do not go beyond basic data analysis. These
findings are often displayed using tables and graphs, as discussed further in Chapter
25. Although the findings of basic analysis are valuable in their own right, they also
provide guidance for conducting multivariate analysis. The insights gained from the
basic analysis are also invaluable in interpreting the results obtained from more
sophisticated statistical techniques. The following examples provide a ‘flavour’ of
basic data analysis techniques. We illustrate the use of cross-tabulation, chi-square
analysis and hypothesis testing.

Basic data analyses

In the GlobalCash Project, basic data analysis formed the foundation for conducting subse-

quent multivariate analysis. Data analysis began by obtaining a frequency distribution and

descriptive statistics for each variable or question asked in the survey. In addition to identify-

ing possible problems with the data, this information provided a good idea of the data and

insights into how specific variables should be treated in subsequent analyses. For example,

should some variables such as the ‘global turnover of companies in €million’ be treated as

categorical, and, if so, how many categories should there be? Several two- and three-variable

cross-tabulations were also conducted to identify associations in the data. The effects of vari-

ables with two categories on the metric dependent variables of interest were examined by

means of t tests and other hypothesis testing procedures. ■

Bank accounts outside one’s home country

Measures of companies’ plans over the next two years were conducted in the GlobalCash

Project. Results showed differences in the nature of these plans in different countries. The

following table focuses upon the results from German respondents. The first question tackled

was the intention to change the number of banks a company has business relationships with.

The responses to this question were broken down into respondents who plan, or do not plan

for more automation in their treasury function. Cross-tabulation and chi-square analysis pro-

vided the following:
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e x a m p l e

GlobalCash Project

e x a m p l e

GlobalCash Project

Treasury function to be more automated? (%)

Intend to change the number

of banks you use? Yes No

No 59 74

Increase 6 7

Decrease 35 19

χ2 = 6.51 p = < 0.05



 

These results indicate that in German companies there is little difference in plans to auto-

mate when companies plan to increase the number of banks they work with. Where a

decrease in the number of banks is planned, a much higher proportion plan to have more

automation in their treasury function. ■

Catalogues are risky business1

Twelve product categories were examined to compare shopping by catalogue with store shop-

ping. The hypothesis that there is no significant difference in the overall amount of risk perceived

when buying products by catalogue compared with buying the same products in a retail store

was rejected. The hypothesis was tested by computing 12 paired-observations t tests, one for

each product. Mean scores for overall perceived risk for some of the products in both buying sit-

uations are presented in the following table, with higher scores indicating greater risk.

As can be seen, a significantly (p < 0.01) higher overall amount of perceived risk was attached

to products purchased by catalogue as compared with those purchased from a retail store. ■

The first GlobalCash example illustrates the role of basic data analysis used in con-
junction with multivariate procedures, whereas the other two examples show how
such analysis can be useful in its own right. The cross-tabulation and chi-square
analysis in the GlobalCash plans example and the paired t tests in the catalogue shop-
ping example enabled us to draw specific conclusions from the data. Before these
types of conclusions are drawn, it is useful to examine the frequency distributions of
the relevant variables.

Frequency distribution

Marketing researchers often need to answer questions about a single variable.
For example:

■ How many users of the brand may be characterised as brand loyal?
■ What percentage of the market consists of heavy users, medium users, light users

and non-users?
■ How many customers are very familiar with a new product offering? How many

are familiar, somewhat familiar, or unfamiliar with the brand? What is the mean
familiarity rating? Is there much variance in the extent to which customers are
familiar with the new product?

■ What is the income distribution of brand users? Is this distribution skewed towards
low income brackets?
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e x a m p l e

Product Overall perceived risk

Catalogue Store

Shoes 58.60 50.80*

Pocket calculator 49.62 42.00*

Hi-fi 48.89 41.98*

Portable television 48.53 40.91*

Digital camera 48.13 39.52*

Athletic socks 35.22 30.22*

Perfume 34.85 29.79*

CDs 32.65 28.74*

* Significant at 0.01 level



 

The answers to these kinds of questions can be determined by examining frequency

distributions. In a frequency distribution, one variable is considered at a time.
The objective is to obtain a count of the number of responses associated with dif-

ferent values of the variable. The relative occurrence, or frequency, of different values
of the variable is expressed in percentages. A frequency distribution for a variable pro-
duces a table of frequency counts, percentages and cumulative percentages for all the
values associated with that variable.

Table 18.1 gives the frequency distribution of the replies to a question on selecting

banks in the GlobalCash Project. Respondents were asked to rank order the top five

criteria they use in selecting a bank. One of those criteria was a ‘good electronic bank-

ing system’ and the replies to that criterion are shown in Table 18.1. In the table, the

first column contains the labels assigned to the different categories of the variable and

the second column indicates the codes assigned to each value. Note that a code of 9

has been assigned to missing values. The third column gives the number of respon-

dents ticking each value. For example, 203 respondents ticked value 1, indicating that

they felt that a good electronic banking system was their most important criterion

when selecting a bank. The fourth column displays the percentage of respondents

ticking each value.

The fifth column shows percentages calculated by excluding the cases with missing

values. If there are no missing values, columns 4 and 5 are identical. The last column

represents cumulative percentages after adjusting for missing values. As can be seen,

of the 1,079 respondents who participated in the survey, 18.8% entered a figure of ‘1’

indicating the criterion that was the ‘most important’. If the five respondents with

missing values are excluded, this changes to 18.9%. Examining the cumulative per-

centage column, it is clear that 47.2% of respondents would rate ‘a good electronic

banking system’ as being in their top three criteria in selecting a bank. In other words,

47.2% of the respondents with valid responses indicated a value of 3 or less.

A frequency distribution helps determine the extent of item non-response. It also

indicates the extent of illegitimate responses. Values of 0, 7 and 8 would be illegiti-

mate responses, or errors. The cases with these values could be identified and

corrective action could be taken. The presence of outliers or cases with extreme values

can also be detected. For example, in the case of a frequency distribution of house-

hold size, a few isolated families with household sizes of nine or more might be

considered outliers. A frequency distribution also indicates the shape of the empirical

distribution of the variable. The frequency data may be used to construct a histogram,

or a vertical bar chart in which the values of the variable are portrayed along the x

axis and the absolute or relative frequencies of the values are placed along the y axis.
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Frequency distribution

A mathematical distribution

whose objective is to obtain a

count of the number of

responses associated with

different values of one

variable and to express these

counts in percentage terms.

Value label Value Frequency Percentage Valid Cumulative

(N) percentage percentage

Most important criterion 1 203 18.8 18.9 18.9

Second most important 2 166 15.4 15.5 34.4

Third most important 3 138 12.8 12.8 47.2

Fourth most important 4 104 9.6 9.7 56.9

Fifth most important 5 77 7.1 7.2 64.1

Not rated 6 386 35.8 35.9 100.0

Missing 9 5 0.5 missing

TOTAL 1079 100.0 100.0

Table 18.1 Rating of ‘good electronic banking system’ as a criterion in selecting a bank



 

Figure 18.1 is a histogram of the frequency data in Table 18.1. From the histogram,
one could examine whether the observed distribution is consistent with an expected
or assumed distribution.

Statistics associated with frequency distribution

A frequency distribution is a convenient way of looking at different values of a vari-
able. A frequency table is easy to read and provides basic information, but sometimes
this information may be too detailed and the researcher must summarise it by the use
of descriptive statistics.2 The most commonly used statistics associated with frequen-
cies are measures of location (mean, mode and median), measures of variability
(range, interquartile range, variance, standard deviation and coefficient of variation),
and measures of shape (skewness and kurtosis).3

Measures of location

The measures of location that we discuss are measures of central tendency because
they tend to describe the centre of the distribution. If the entire sample is changed by
adding a fixed constant to each observation, then the mean, mode and median change
by the same fixed amount.

Mean. The mean, or average value, is the most commonly used measure of central
tendency. The measure is used to estimate the mean when the data have been col-
lected using an interval or ratio scale. The data should display some central tendency,
with most of the responses distributed around the mean.

The mean, X
–

, is given by

n

∑ Xi
i=1

X
–

= –––––
n

where
Xi = observed values of the variable X
n = number of observations (sample size).
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Measure of location

A statistic that describes a

location within a data set.

Measures of central tendency

describe the centre of the

distribution.

Mean

The average; that value

obtained by summing all

elements in a set and dividing

by the number of elements.
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Generally, the mean is a robust measure and does not change markedly as data values
are added or deleted. For the frequencies given in Table 18.1, the mean value is calcu-
lated as follows:

X
–

= 

= 

= 

= 3.768

Mode. The mode is the value that occurs most frequently. It represents the highest
peak of the distribution. The mode is a good measure of location when the variable is
inherently categorical or has otherwise been grouped into categories. The mode in
Table 18.1 is 6.

Median. The median of a sample is the middle value when the data are arranged in
ascending or descending order. If the number of data points is even, the median is
usually estimated as the midpoint between the two middle values by adding the two
middle values and dividing their sum by 2. The median is the 50th percentile. The
median is an appropriate measure of central tendency for ordinal data. In Table 18.1,
the middle value is 4, so the median is 4.

As can be seen from Table 18.1, the three measures of central tendency for this dis-
tribution are different (mean = 3.768, mode = 6, median = 4). This is not surprising,
since each measure defines central tendency in a different way. So which measure
should be used? If the variable is measured on a nominal scale, the mode should be
used. If the variable is measured on an ordinal scale, as in Figure 18.1 and Table 18.1,
the median is appropriate.

If the variable is measured on an interval or ratio scale, the mode is a poor measure
of central tendency. In general, for interval or ratio data, the median is a better measure
of central tendency, although it too ignores available information about the variable.
The actual values of the variable above and below the median are ignored. The mean is
the most appropriate measure of central tendency for interval or ratio data. The mean
makes use of all the information available since all of the values are used in computing
it. The mean, however, is sensitive to extremely small or extremely large values (out-
liers). When there are outliers in the data, the mean is not a good measure of central
tendency, and it is useful to consider both the mean and the median.

Measures of variability

The measures of variability, which are calculated on interval or ratio data, include the
range, interquartile range, variance or standard deviation, and coefficient of variation.

Range. The range measures the spread of the data. It is simply the difference between
the largest and smallest values in the sample:

range = Xlargest – Xsmallest

As such, the range is directly affected by outliers. If all the values in the data are multi-
plied by a constant, the range is multiplied by the same constant. The range in Table
18.1 is 6 – 1 = 5.

4066–––––
1079

203 + 332 + 414 + 416 + 385 + 2316–––––––––––––––––––––––––––––––––
1079

(203 × 1) + (166 × 2) + (138 × 3) + (104 × 4) + (77 × 5) + (386 × 6)––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
1079
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Range

The difference between the

smallest and largest values of

a distribution.

Measure of variability

A statistic that indicates the

distribution’s dispersion.

Mode

A measure of central

tendency given as the value

that occurs with the most

frequency in a sample

distribution.

Median

A measure of central

tendency given as the value

above which half of the values

fall and below which half of

the values fall.



 

Interquartile range. The interquartile range is the difference between the 75th and

25th percentiles. For a set of data points arranged in order of magnitude, the pth per-

centile is the value that has p% of the data points below it and (100 – p) % above it. If

all the data points are multiplied by a constant, the interquartile range is multiplied

by the same constant. The interquartile range in Table 18.1 is 6 – 2 = 4.

Variance. The difference between the mean and an observed value is called the devia-

tion from the mean. The variance is the mean squared deviation from the mean. The

variance can never be negative. When the data points are clustered around the mean,

the variance is small. When the data points are scattered, the variance is large. If all

the data values are multiplied by a constant, the variance is multiplied by the square

of the constant.

Standard deviation. The standard deviation is the square root of the variance.

Thus, the standard deviation is expressed in the same units as the data, rather than in

squared units. The standard deviation of a sample, sx, is calculated as:

sx = 

We divide by n – 1 instead of n because the sample is drawn from a population and

we are trying to determine how much the responses vary from the mean of the entire

population. The population mean is unknown, however; therefore, the sample mean

is used instead. The use of the sample mean makes the sample seem less variable than

it really is. By dividing by n – 1 instead of by n, we compensate for the smaller vari-

ability observed in the sample. For the data given in Table 18.1, the variance is

calculated as follows:

s 2
x =

=

=

= 3.91

The standard deviation, therefore, is calculated as

sx = 3.91

= 1.98

Coefficient of variation. The coefficient of variation is the ratio of the standard
deviation to the mean expressed as a percentage, and it is a unitless measure of rela-
tive variability. The coefficient of variation, CV, is expressed as

CV =
sx––
X
–

4201.07–––––––
1073

1555.35 + 518.87 + 81.40 + 5.60 + 116.87 + 1922.98––––––––––––––––––––––––––––––––––––––––––––––
1073

{203 × (1 – 3.768)2 + 166 × (2 – 3.768)2 + 138 × (3 – 3.768)2

+ 104 × (4 – 3.768)2 + 77 × (5 – 3.768)2 + 368 × (6 – 3.768)2}––––––––––––––––––––––––––––––––––––----–––––––––––––––
1073

n

∑(Xi – X
–

)2

––––––––i=1
n – 1
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Interquartile range

The range of a distribution

encompassing the middle

50% of the observations.

Variance

The mean squared deviation

of all the values of the mean.

Standard deviation

The square root of the

variance.

Coefficient of variation

A useful expression in

sampling theory for the

standard deviation as a

percentage of the mean.



 

The coefficient of variation is meaningful only if the variable is measured on a ratio
scale. It remains unchanged if all the data values are multiplied by a constant. Since
the data in Table 18.1 are not measured on a ratio scale, it is not meaningful to calcu-
late the coefficient of variation.

Measures of shape

In addition to measures of variability, measures of shape are also useful in under-
standing the nature of the distribution. The shape of a distribution is assessed by
examining skewness and kurtosis.

Skewness. Distributions can be either symmetric or skewed. In a symmetric distribu-
tion, the values on either side of the centre of the distribution are the same, and the
mean, mode and median are equal. The positive and corresponding negative deviations
from the mean are also equal. In a skewed distribution, the positive and negative devia-
tions from the mean are unequal. Skewness is the tendency of the deviations from the
mean to be larger in one direction than in the other. It can be thought of as the ten-
dency for one tail of the distribution to be heavier than the other (see Figure 18.2). The
skewness value for the data of Table 18.1 is –0.352, indicating a negative skew.

Kurtosis. Kurtosis is a measure of the relative peakedness or flatness of the curve
defined by the frequency distribution. The kurtosis of a normal distribution is zero. If
the kurtosis is positive, then the distribution is more peaked than a normal distribu-
tion. A negative value means that the distribution is flatter than a normal
distribution. The value of this statistic for Table 18.1 is –0.0113, indicating that the
distribution is flatter than a normal distribution.

A general procedure for hypothesis testing

Basic analysis invariably involves some hypothesis testing. Examples of hypotheses
generated in marketing research abound:

■ A cinema is being patronised by more than 10% of the households in a city.
■ The heavy and light users of a brand differ in terms of psychographic characteristics.
■ One hotel has a more ‘luxurious’ image than its close competitor.
■ Familiarity with a restaurant results in greater preference for that restaurant.

Chapter 15 covered the concepts of the sampling distribution, standard error of the mean
or the proportion, and the confidence interval.4 All these concepts are relevant to hypoth-
esis testing and should be reviewed. We now describe a general procedure for hypothesis
testing that can be applied to test hypotheses about a wide range of parameters.
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Skewness

A characteristic of a

distribution that assesses its

symmetry about the mean.

Kurtosis

A measure of the relative

peakedness of the curve

defined by the frequency

distribution.

Mean
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Mode

Symmetric distribution

Median

Skewed distribution

ModeMean
Figure 18.2

Skewness of a

distribution



 

The following steps are involved in hypothesis testing (Figure 18.3).

1 Formulate the null hypothesis H0 and the alternative hypothesis H1.
2 Select an appropriate statistical technique and the corresponding test statistic.
3 Choose the level of significance, α.
4 Determine the sample size and collect the data. Calculate the value of the test 

statistic.
5 Determine the probability associated with the test statistic under the null hypothe-

sis, using the sampling distribution of the test statistic. Alternatively, determine the
critical values associated with the test statistic that divide the rejection and non-
rejection region.

6 Compare the probability associated with the test statistic with the level of signifi-
cance specified. Alternatively, determine whether the test statistic has fallen into the
rejection or the non-rejection region.

7 Make the statistical decision to reject or not reject the null hypothesis.
8 Express the statistical decision in terms of the marketing research problem.

Step 1: Formulate the hypothesis

The first step is to formulate the null and alternative hypotheses. A null hypothesis is
a statement of the status quo, one of no difference or no effect. If the null hypothesis
is not rejected, no changes will be made. An alternative hypothesis is one in which
some difference or effect is expected. Accepting the alternative hypothesis will lead to
changes in opinions or actions. Thus, the alternative hypothesis is the opposite of the
null hypothesis.

The null hypothesis is always the hypothesis that is tested. The null hypothesis
refers to a specified value of the population parameter (e.g. µ, σ, π), not a sample sta-
tistic (e.g. X

–
). A null hypothesis may be rejected, but it can never be accepted based on

a single test. A statistical test can have one of two outcomes: that the null hypothesis is
rejected and the alternative hypothesis accepted, or that the null hypothesis is not
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Null hypothesis

A statement in which no

difference or effect is

expected. If the null

hypothesis is not rejected, no

changes will be made.

Alternative hypothesis

A statement that some

difference or effect is

expected. Accepting the

alternative hypothesis will lead

to changes in opinions or
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Figure 18.3

A general procedure for

hypothesis testing



 

rejected based on the evidence. It would be incorrect, however, to conclude that since
the null hypothesis is not rejected, it can be accepted as valid. In classical hypothesis
testing, there is no way to determine whether the null hypothesis is true.

In marketing research, the null hypothesis is formulated in such a way that its
rejection leads to the acceptance of the desired conclusion. The alternative hypothesis
represents the conclusion for which evidence is sought. For example, a garage is con-
sidering introducing a collection and delivery system when customers’ cars need
repairs. Given the investment in personnel to make this plan work well, it will only be
introduced if it is preferred by more than 40% of the customers. The appropriate way
to formulate the hypotheses is

H0: π ≤ 0.40

H1: π > 0.40

If the null hypothesis H0 is rejected, then the alternative hypothesis H1 will be
accepted and the new collection and delivery service introduced. On the other hand,
if H0 is not rejected, then the new collection and delivery service should not be intro-
duced unless additional evidence is obtained. The test of the null hypothesis is a
one-tailed test because the alternative hypothesis is expressed directionally: the pro-
portion of customers who express a preference is greater than 0.40.

On the other hand, suppose that the researcher wanted to determine whether the
new collection and delivery service is different (superior or inferior) from the existing
form of getting a car to the garage for repairs, which is preferred by 40 per cent of the
customers. Then a two-tailed test would be required, and the hypotheses would be
expressed as

H0: π = 0.40

H1: π ≠ 0.40

In commercial marketing research, the one-tailed test is used more often than a two-
tailed test. Typically, there is some preferred direction for the conclusion for which
evidence is sought. For example, the higher the profits, sales and product quality, the
better. The one-tailed test is more powerful than the two-tailed test. The power of a
statistical test is discussed further in step 3.

Step 2: Select an appropriate statistical technique

To test the null hypothesis, it is necessary to select an appropriate statistical technique.
The researcher should take into consideration how the test statistic is computed and
the sampling distribution that the sample statistic (e.g. the mean) follows. The test
statistic measures how close the sample has come to the null hypothesis. The test sta-
tistic often follows a well-known distribution, such as the normal, t, or chi-square
distribution. Guidelines for selecting an appropriate test or statistical technique
are discussed later in this chapter. In our example, the z statistic, which follows the
standard normal distribution, would be appropriate. This statistic would be com-
puted as follows:

z =

where

σp = π(1 – π)
–––––––

n

p – π
–––––
σp

Chapter 18 • Frequency distribution, cross-tabulation and hypothesis testing

454

Two-tailed test

A test of the null hypothesis

where the alternative

hypothesis is not expressed

directionally.

Test statistic

A measure of how close the

sample has come to the null

hypothesis. It often follows a

well-known distribution, such

as the normal, t, or chi-

square distribution.

One-tailed test

A test of the null hypothesis

where the alternative

hypothesis is expressed

directionally.



 

Step 3: Choose the level of significance

Whenever we draw inferences about a population, there is a risk that an incorrect

conclusion will be reached. Two types of error can occur.

Type I error occurs when the sample results lead to the rejection of the null

hypothesis when it is in fact true. In our example, a type I error would occur if we

concluded, based on sample data, that the proportion of customers preferring the

new collection and delivery service was greater than 0.40, when in fact it was less than

or equal to 0.40. The probability of type I error (α) is also called the level of signifi-

cance. The type I error is controlled by establishing the tolerable level of risk of

rejecting a true null hypothesis. The selection of a particular risk level should depend

on the cost of making a type I error.

Type II error occurs when, based on the sample results, the null hypothesis is not

rejected when it is in fact false. In our example, the type II error would occur if we

concluded, based on sample data, that the proportion of customers preferring the

new collection and delivery service was less than or equal to 0.40 when in fact it was

greater than 0.40. The probability of type II error is denoted by β. Unlike α, which is

specified by the researcher, the magnitude of β depends on the actual value of the

population parameter (proportion). The probability of type I error (α) and the prob-

ability of type II error (β) are shown in Figure 18.4.

The complement (1 – β) of the probability of a type II error is called the power of a

statistical test. The power of a test is the probability (1 – β) of rejecting the null

hypothesis when it is false and should be rejected. Although β is unknown, it is related

to α. An extremely low value of α (e.g. 0.001) will result in intolerably high β errors. So

it is necessary to balance the two types of errors. As a compromise, α is often set at

0.05; sometimes it is 0.01; other values of α are rare. The level of α along with the

sample size will determine the level of β for a particular research design. The risk of

both α and β can be controlled by increasing the sample size. For a given level of α,

increasing the sample size will decrease β, thereby increasing the power of the test.

Step 4: Collect the data and calculate the test statistic

Sample size is determined after taking into account the desired α and β errors and

other qualitative considerations, such as budget constraints. Then the required data

are collected and the value of the test statistic is computed. Suppose, in our example,

that 500 customers were surveyed and 220 expressed a preference for the new
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collection and delivery service. Thus the value of the sample proportion is p̂= 220/500

= 0.44. The value of σ p^ can be determined as follows:

σ
p̂ =

=

= 0.0219

The test statistic z can be calculated as follows:
p̂ – π

z = –––––
σp̂

0.44 – 0.40
= ––––––––––

0.0219

= 1.83

Step 5: Determine the probability or the critical value

Using standard normal tables (Table 2 of the Appendix of Statistical Tables), the prob-
ability of obtaining a z value of 1.83 can be calculated (see Figure 18.5). The shaded
area between –∞ and 1.83 is 0.9664. Therefore, the area to the right of z = 1.83 is
1.0000 – 0.9664 = 0.0336.

Alternatively, the critical value of z, which will give an area to the right side of the
critical value of 0.05, is between 1.64 and 1.65 and equals 1.645. Note that, in deter-
mining the critical value of the test statistic, the area to the right of the critical value is
either α or α/2. It is α for a one-tailed test and α/2 for a two-tailed test.

Steps 6 and 7: Compare the probability or critical values and make

the decision

The probability associated with the calculated or observed value of the test statistic is
0.0336. This is the probability of getting a p value of 0.44 when p^ = 0.40. This is less
than the level of significance of 0.05. Hence, the null hypothesis is rejected.
Alternatively, the calculated value of the test statistic z = 1.83 lies in the rejection
region, beyond the value of 1.645. Again, the same conclusion to reject the null
hypothesis is reached. Note that the two ways of testing the null hypothesis are equiv-
alent but mathematically opposite in the direction of comparison. If the probability
associated with the calculated or observed value of the test statistic (TSCAL) is less
than the level of significance (α), the null hypothesis is rejected. If the calculated value
of the test statistic is greater than the critical value of the test statistic (TSCR), however,

0.40 × 0.60––––––––––
500

π(1 – π)–––––––
n
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the null hypothesis is rejected. The reason for this sign shift is that the larger the value
of TSCAL, the smaller the probability of obtaining a more extreme value of the test sta-
tistic under the null hypothesis. This sign shift can be easily seen:

if probability of TSCAL < significance level (α), then reject H0

but

if TSCAL > TSCR, then reject H0

Step 8: Draw the marketing research conclusion

The conclusion reached by hypothesis testing must be expressed in terms of the mar-
keting research problem. In our example, we conclude that there is evidence that the
proportion of customers preferring the new service plan is significantly greater than
0.40. Hence, the recommendation would be to introduce the new collection and
delivery service.

As can be seen from Figure 18.6, hypothesis testing can be related to either an
examination of associations or an examination of differences. In tests of associations
the null hypothesis is that there is no association between the variables (H0: ... is NOT
related to ... ). In tests of differences the null hypothesis is that there is no difference
(H0: ... is NOT different than ... ). Tests of differences could relate to distributions,
means, proportions, or medians or rankings. First, we discuss hypotheses related to
associations in the context of cross-tabulations.

Cross-tabulations

Although answers to questions related to a single variable are interesting, they often
raise additional questions about how to link that variable to other variables. To intro-
duce the frequency distribution, we posed several representative marketing research
questions. For each of these, a researcher might pose additional questions to relate
these variables to other variables. For example:

■ How many brand-loyal users are males?
■ Is product use (measured in terms of heavy users, medium users, light users and

non-users) related to interest in outdoor leisure activities (high, medium and low)?
■ Is familiarity with a new product related to age and income levels?
■ Is product ownership related to income (high, medium and low)?

The answers to such questions can be determined by examining cross-tabulations. A
frequency distribution describes one variable at a time, but a cross-tabulation
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describes two or more variables simultaneously. Cross-tabulation results in tables that
reflect the joint distribution of two or more variables with a limited number of cate-
gories or distinct values. The categories of one variable are cross-classified with the
categories of one or more other variables. Thus, the frequency distribution of one
variable is subdivided according to the values or categories of the other variables.

Using the GlobalCash Project as an example, suppose that interest was expressed in
determining whether the number of European countries that a company operates in
was associated with the plans to change the number of banks they do business with.
The cross-tabulation is shown in Table 18.2. A cross-tabulation includes a cell for
every combination of the categories of the two variables. The number in each cell
shows how many respondents gave that combination of responses. In Table 18.2, 105
operated in only one European country and did not plan to change the number of
banks they do business with.

The totals in this table indicate that, of the 972 respondents with valid responses on
both the variables, 614 had no plans to change, 64 would increase and 294 would
decrease the number of banks they do business with. Based on how many European
countries a company operates in, 151 operate in one country, 209 in two to five coun-
tries, 186 in six to 10 countries, 145 in 11 to 15 countries and 281 in more than 15
countries. Note that this information could have been obtained from a separate fre-
quency distribution for each variable. In general, the margins of a cross-tabulation
show the same information as the frequency tables for each of the variables.

Cross-tabulation tables are also called contingency tables. The data are considered
to be qualitative or categorical data, because each variable is assumed to have only a
nominal scale.5 Cross-tabulation is widely used in commercial marketing research
because (1) cross-tabulation analysis and results can be easily interpreted and under-
stood by managers who are not statistically oriented; (2) the clarity of interpretation
provides a stronger link between research results and managerial action; (3) a series of
cross-tabulations may provide greater insights into a complex phenomenon than a
single multivariate analysis; (4) cross-tabulation may alleviate the problem of sparse
cells, which could be serious in discrete multivariate analysis; and (5) cross-tabulation
analysis is simple to conduct and appealing to less-sophisticated researchers.6 We will
discuss cross-tabulation for two and three variables.

Two variables

Cross-tabulation with two variables is also known as bivariate cross-tabulation.
Consider again the cross-classification of the number of countries in Europe that a
company operates in and plans to change the number of banks that a company does
business with, given in Table 18.2. Is operating in a high number of European coun-
tries related to plans to reduce bank numbers? It appears to be from Table 18.2. We
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In how many countries does your company operate?

Do you intend to change the 1 2 to 5 6 to 10 11 to 15 Over 15 Row

number of banks you use? total

No 105 130 115 92 172 614

Increase 12 22 7 9 14 64

Decrease 34 57 64 44 95 294

Column total 151 209 186 145 281 972

Table 18.2 Number of countries in Europe that a company operates in and plans to

change the number of banks that a company does business with

Contingency table

A cross-tabulation table. It

contains a cell for every

combination of categories of

the two variables.



 

see that disproportionately more of the respondents who operate in over 15 European
countries plan to decrease the number of banks that they do business with compared
with those that operate in 15 or fewer countries. Computation of percentages can
provide more insights.

Because two variables have been cross-classified, percentages could be computed
either column-wise, based on column totals (Table 18.3), or row-wise, based on row
totals (Table 18.4). Which table is more useful?

The answer depends on which variable will be considered as the independent vari-
able and which as the dependent variable.7 The general rule is to compute the
percentages in the direction of the independent variable, across the dependent vari-
able. In our analysis, number of countries may be considered as the independent
variable and planned changes as the dependent variable, and the correct way of calcu-
lating percentages is shown in Table 18.3. Note that while 70% of those operating in
one country do not plan to make any changes, 61% of those who operate in over 15
countries do not plan to change their number of banks. This seems plausible given
the costs and complexity of operating many bank accounts in many countries.
Companies faced with such an array of accounts may be seeking to make further cuts
and savings, especially with the introduction of European Monetary Union.

Note that computing percentages in the direction of the dependent variable across
the independent variable, as shown in Table 18.4, is not meaningful in this case. Table
18.4 implies that plans to change the number of bank relationships influence compa-
nies’ decisions to operate in certain numbers of European countries. This latter
finding seems implausible. It is possible, however, that the association between
‘change plans’ and ‘numbers of countries’ is mediated by a third variable, such as the
country where an ultimate parent company in a group operates from, e.g. although
Hitachi has operations in Britain, Germany and Italy, their ultimate parentage is
Japanese. It is possible that companies whose group parentage is in areas of the globe
whose economic conditions are more or less favourable than Europe are affected in
the extent of planned changes to their bank relationships. This kind of possibility
points to the need to examine the effect of a third variable.
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In how many countries does your company operate?

Do you intend to change the 1 2 to 5 6 to 10 11 to 15 Over 15 Row

number of banks you use? total

No 17% 21% 19% 15% 28% 100%

Increase 19% 34% 11% 14% 22% 100%

Decrease 12% 19% 22% 15% 32% 100%

Table 18.4 Number of countries in Europe that a company operates in by plans to change

the number of banks that a company does business with

In how many countries does your company operate?

Do you intend to change the 1 2 to 5 6 to 10 11 to 15 over 15

number of banks you use?

No 70% 62% 62% 63% 61%

Increase 7% 11% 4% 7% 5%

Decrease 23% 27% 34% 30% 34%

Column total 100% 100% 100% 100% 100%

Table 18.3 Plans to change the number of banks that a company does business with by

number of countries in Europe that a company operates in



 

Three variables

Often the introduction of a third variable clarifies the initial association (or lack of it)
observed between two variables. As shown in Figure 18.7, the introduction of a third
variable can result in four possibilities:

1 It can refine the association observed between the two original variables.
2 It can indicate no association between the two original variables, although an asso-

ciation was initially observed. In other words, the third variable indicates that the
initial association between the two variables was spurious.

3 It can reveal some association between the two original variables, although no
association was initially observed. In this case, the third variable reveals a sup-
pressed association between the first two variables.

4 It can indicate no change in the initial pattern.8

These cases are explained with examples based on a sample of 1,000 respondents.
Although these examples are contrived to illustrate specific cases, such cases are not
uncommon in commercial marketing research.

Refine an initial relationship. An examination of the relationship between the pur-
chase of ‘designer’ clothing and marital status resulted in the data reported in Table
18.5. The respondents were classified into either high or low categories based on their
purchase of ‘designer’ clothing. Marital status was also measured in terms of two cate-
gories: currently married or unmarried. As can be seen from Table 18.5, 52% of
unmarried respondents fell in the high-purchase category as opposed to 31% of the
married respondents. Before concluding that unmarried respondents purchase more
‘designer’ clothing than those who are married, a third variable, the buyer’s gender,
was introduced into the analysis.
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Marital status

Purchase of ‘designer’ clothing Married Unmarried

High 31% 52%

Low 69% 48%

Column 100% 100%

Number of respondents 700 300

Table 18.5 Purchase of ‘designer’ clothing by marital status



 

The buyer’s gender was selected as the third variable based on past research. The
relationship between purchase of ‘designer’ clothing and marital status was re-exam-
ined in light of the third variable, as shown in Table 18.6. In the case of females, 60%
of the unmarried respondents fall in the high-purchase category compared with 25%
of those who are married. On the other hand, the percentages are much closer for
males, with 40% of the unmarried respondents and 35% of the married respondents
falling in the high-purchase category. Hence, the introduction of gender (third vari-
able) has refined the relationship between marital status and purchase of ‘designer’
clothing (original variables). Unmarried respondents are more likely to fall into the
high-purchase category than married ones, and this effect is much more pronounced
for females than for males.

Initial relationship was spurious. A researcher working for an advertising agency
promoting a car brand costing more than €60,000 was attempting to explain the own-
ership of expensive cars (see Table 18.7). The table shows that 32 of those with
university degrees own an expensive (more than €60,000) car compared with 21% of
those without university degrees. The researcher was tempted to conclude that educa-
tion influenced ownership of expensive cars. Realising that income may also be a
factor, the researcher decided to re-examine the relationship between education and
ownership of expensive cars in the light of income level. This resulted in Table 18.8.
Note that the percentages of those with and without university degrees who own
expensive cars are the same for each income group. When the data for the high-
income and low-income groups are examined separately, the association between
education and ownership of expensive cars disappears, indicating that the initial rela-
tionship observed between these two variables was spurious.

Reveal suppressed association. A researcher suspected that desire to travel abroad
may be influenced by age. A cross-tabulation of the two variables produced the results
in Table 18.9, indicating no association. When gender was introduced as the third
variable, Table 18.10 was obtained. Among men, 60% of those under 45 indicated a
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Education

Own expensive car Degree No degree

Yes 32% 21%

No 68% 79%

Column 100% 100%

Number of respondents 250 750

Table 18.7 Ownership of expensive cars by education level

Gender

Male Female

Marital status Marital status

Purchase of ‘designer’ clothing Married Unmarried Married Unmarried

High 35% 40% 25% 60%

Low 65% 60% 75% 40%

Column 100% 100% 100% 100%

Number of respondents 400 120 300 180

Table 18.6 Purchase of ‘designer’ clothing by marital status and gender



 
desire to travel abroad compared with 40% of those 45 or older. The pattern was
reversed for women, where 35% of those under 45 indicated a desire to travel abroad
as opposed to 65% of those 45 or older. Since the association between desire to travel
abroad and age runs in the opposite direction for males and females, the relationship
between these two variables is masked when the data are aggregated across gender as
in Table 18.9. But when the effect of gender is controlled, as in Table 18.10, the sup-
pressed association between preference and age is revealed for the separate categories
of males and females.

No change in initial relationship. In some cases, the introduction of the third vari-
able does not change the initial relationship observed, regardless of whether the
original variables were associated. This suggests that the third variable does not influ-
ence the relationship between the first two. Consider the cross-tabulation of family
size and the tendency to eat in fast-food restaurants frequently, as shown in Table
18.11. The respondents’ families were classified into small- and large-size categories
based on a median split of the distribution, with 500 respondents in each category.
No association is observed. The respondents were further classified into high- or low-
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Income

Low income High income

Education Education

Own expensive car Degree No degree Degree No degree

Yes 20% 20% 40% 40%

No 80% 80% 60% 60%

Column totals 100% 100% 100% 100%

Number of respondents 100 700 150 50

Table 18.8 Ownership of expensive cars by education and income levels

Gender

Male Female 

Age Age

Desire to travel abroad Under 45 45 or older Under 45 45 or older

Yes 60% 40% 35% 65%

No 40% 60% 65% 35%

Column totals 100% 100% 100% 100%

Number of respondents 300 300 200 200

Table 18.10 Desire to travel abroad by age and gender

Age

Desire to travel abroad Under 45 45 or older

Yes 50% 50%

No 50% 50%

Column totals 100% 100%

Number of respondents 500 500

Table 18.9 Desire to travel abroad by age



 

income groups based on a median split. When income was introduced as a third vari-
able in the analysis, Table 18.12 was obtained. Again, no association was observed.

General comments on cross-tabulation

Even though more than three variables can be cross-tabulated, the interpretation is

quite complex. Also, because the number of cells increases multiplicatively, maintain-

ing an adequate number of respondents or cases in each cell can be problematic. As a

general rule, there should be at least five expected observations in each cell for the

computed statistics to be reliable. Thus, cross-tabulation is an inefficient way of

examining relationships when there are more than a few variables. Note that cross-

tabulation examines association between variables, not causation. To examine

causation, the causal research design framework should be adopted (see Chapter 11).

Statistics associated with cross-tabulation

We now discuss the statistics commonly used for assessing the statistical significance

and strength of association of cross-tabulated variables. The statistical significance of

the observed association is commonly measured by the chi-square statistic. The

strength of association, or degree of association, is important from a practical or sub-

stantive perspective. Generally, the strength of association is of interest only if the

association is statistically significant. The strength of the association can be measured

by the phi correlation coefficient, the contingency coefficient, Cramer’s V, and the

lambda coefficient. These statistics are described in detail.

Chi-square

The chi-square statistic (χ2) is used to test the statistical significance of the observed
association in a cross-tabulation. It assists us in determining whether a systematic asso-
ciation exists between the two variables. The null hypothesis, H0, is that there is no
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Income

Low income High income

Eat frequently in fast-food
Family size Family size

restaurants Small Large Small Large

Yes 65% 65% 65% 65%

No 35% 35% 35% 35%

Column total 100% 100% 100% 100%

Number of respondents 250 250 250 250

Table 18.12 Eating frequently in fast-food restaurants by family size and income

Eat frequently in fast-food
Family size

restaurants Small Large

Yes 65% 65%

No 35% 35%

Column totals 100% 100%

Number of respondents 500 500

Table 18.11 Eating frequently in fast-food restaurants by family size

Chi-square statistic

The statistic used to test the

statistical significance of the

observed association in a

cross-tabulation. It assists us
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association between the variables. The test is conducted by computing the cell frequen-
cies that would be expected if no association were present between the variables, given
the existing row and column totals. These expected cell frequencies, denoted fe, are
then compared with the actual observed frequencies, fo, found in the cross-tabulation
to calculate the chi-square statistic. The greater the discrepancies between the expected
and observed frequencies, the larger the value of the statistic. Assume that a cross-tab-
ulation has r rows and c columns and a random sample of n observations. Then the
expected frequency for each cell can be calculated by using a simple formula:

nrncfe = ––––
n

where nr = total number in the row
nc = total number in the column
n = total sample size.

For the data in Table 18.2, the expected frequencies for the cells, going from left to
right and from top to bottom, are

= 95.4 = 132 = 117.5

= 91.6 = 177.5 = 9.9

= 13.8 = 12.2 = 9.5

= 18.5 = 45.7 = 63.2

= 56.3 = 43.9 = 85

Then the value of χ2 is calculated as follows:

(f0 – fe)
2

χ2 = ∑ –––––––
all cells fe

For the data in Table 18.2, the value of χ2 is calculated as

χ2 = + + +

+ + +

+ + +

+ + +

+  +                                       = 15.8(95 – 85)2
–––––––––

85
(44 – 43.9)2

–––––––––––
43.9

(64 – 56.3)2
–––––––––––

56.3

(57 – 63.2)2
–––––––––––

63.2

(34 – 45.7)2
–––––––––––

45.7

(14 – 18.5)2
–––––––––––

18.5

(9 – 9.5)2
–––––––––

9.5

(7 – 12.2)2
––––––––––

12.2
(22 – 13.8)2

–––––––––––
13.8

(12 – 9.9)2
––––––––––

9.9
(172 – 177.5)2

–––––––––––––
177.5

(92 – 91.6)2
–––––––––––

91.6

(115 – 117.5)2
–––––––––––––

117.5
(130 – 132)2

–––––––––––
132

(105 – 95.4)2
––––––––––––

95.4

294 × 281–––––––––
972

294 × 145–––––––––
972

294 × 186–––––––––
972

294 × 209–––––––––
972

294 × 151–––––––––
972

64 × 281––––––––
972

64 × 145––––––––
972

64 × 186––––––––
972

64 × 209––––––––
972

64 × 151––––––––
972

614 × 281–––––––––
972

614 × 145–––––––––
972

614 × 186–––––––––
972

614 × 209–––––––––
972

614 × 151–––––––––
972
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To determine whether a systematic association exists, the probability of obtaining a
value of chi-square as large as or larger than the one calculated from the cross-tabula-
tion is estimated. An important characteristic of the chi-square statistic is the number
of degrees of freedom (df) associated with it. In general, the number of degrees of
freedom is equal to the number of observations less the number of constraints
needed to calculate a statistical term. In the case of a chi-square statistic associated
with a cross-tabulation, the number of degrees of freedom is equal to the product
of number of rows (r) less one and the number of columns (c) less one. That is,
df = (r – 1) × (c – 1).9 The null hypothesis (H0) of no association between the two
variables will be rejected only when the calculated value of the test statistic is greater
than the critical value of the chi-square distribution with the appropriate degrees of
freedom, as shown in Figure 18.8.

The chi-square distribution is a skewed distribution whose shape depends solely
on the number of degrees of freedom.10 As the number of degrees of freedom
increases, the chi-square distribution becomes more symmetrical. Table 3 in the
Statistical Appendix contains upper-tail areas of the chi-square distribution for differ-
ent degrees of freedom. In this table, the value at the top of each column indicates the
area in the upper portion (the right side, as shown in Figure 18.8) of the chi-square
distribution. To illustrate, for 8 degrees of freedom, the value for an upper-tail area of
0.05 is 15.507. This indicates that for 2 degrees of freedom the probability of exceeding
a chi-square value of 15.507 is 0.05. In other words, at the 0.05 level of significance
with 8 degrees of freedom, the critical value of the chi-square statistic is 15.507.

For the cross-tabulation given in Table 18.2, there are (3 – 1) × ( (5 – 1) = 8 degrees
of freedom. The calculated chi-square statistic had a value of 15.8. Since this exceeds
the critical value of 15.507, the null hypothesis of no association can be rejected, indi-
cating that the association is statistically significant at the 0.05 level.

The chi-square statistic can also be used in goodness-of-fit tests to determine
whether certain models fit the observed data. These tests are conducted by calculating
the significance of sample deviations from assumed theoretical (expected) distribu-
tions and can be performed on cross-tabulations as well as on frequencies (one-way
tabulations). The calculation of the chi-square statistic and the determination of its
significance is the same as illustrated above.

The chi-square statistic should be estimated only on counts of data. When the data
are in percentage form, they should first be converted to absolute counts or numbers.
In addition, an underlying assumption of the chi-square test is that the observations
are drawn independently. As a general rule, chi-square analysis should not be con-
ducted when the expected or theoretical frequency in any of the cells is less than five.
If the number of observations in any cell is less than 10, or if the table has two rows
and two columns (a 2 × 2 table), a correction factor should be applied.11 In the case of
a 2 × 2 table, the chi-square is related to the phi coefficient.

Statistics associated with cross-tabulation

465

Chi-square distribution

A skewed distribution whose

shape depends solely on the

number of degrees of

freedom. As the number of

degrees of freedom increases,

the chi-square distribution

becomes more symmetrical.

Critical

value

Do not

reject H0

Reject H0

χ2
Figure 18.8

Chi-square test of

association



 

Phi coefficient

The phi coefficient (φ) is used as a measure of the strength of association in the spe-
cial case of a table with two rows and two columns (a 2 × 2 table). The phi coefficient
is proportional to the square root of the chi-square statistic. For a sample of size n,
this statistic is calculated as

φ =

It takes the value of 0 when there is no association, which would be indicated by a chi-
square value of 0 as well. When the variables are perfectly associated, phi assumes the
value of 1 and all the observations fall just on the main or minor diagonal. (In some
computer programs, phi assumes a value of –1 rather than +1 when there is perfect
negative association.) In the more general case involving a table of any size, the
strength of association can be assessed by using the contingency coefficient.

Contingency coefficient

Although the phi coefficient is specific to a 2 × 2 table, the contingency coefficient

(C) can be used to assess the strength of association in a table of any size. This index is
also related to chi-square, as follows:

C =

The contingency coefficient varies between 0 and 1. The 0 value occurs in the case of
no association (i.e. the variables are statistically independent), but the maximum
value of 1 is never achieved. Rather, the maximum value of the contingency coeffi-
cient depends on the size of the table (number of rows and number of columns). For
this reason, it should be used only to compare tables of the same size. The value of the
contingency coefficient for Table 18.2 is

C =

=

= 0.1264

This value of C indicates that the association is not very strong.

Cramer’s V

Cramer’s V is a modified version of the phi correlation coefficient, φ, and is used in
tables larger than 2 × 2. When phi is calculated for a table larger than 2 × 2, it has no
upper limit. Cramer’s V is obtained by adjusting phi for either the number of rows or
the number of columns in the table based on which of the two is smaller. The adjust-
ment is such that V will range from 0 to 1. A large value of V merely indicates a high
degree of association. It does not indicate how the variables are associated. For a table
with r rows and c columns, the relationship between Cramer’s V and the phi correla-
tion coefficient is expressed as

V = φ2
––––––––––––––––
min (r – 1), (c – 1)

15.8–––––
987.8

χ2

––––––
χ2 + n

χ2

––––––
χ2 + n

χ2

––
n
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or

V =

The value of Cramer’s V for Table 18.2 is

V =

= 0.045

Thus, the association is not strong.

Lambda coefficient

The lambda coefficient assumes that the variables are measured on a nominal scale.
Asymmetric lambda measures the percentage improvement in predicting the value of
the dependent variable, given the value of the independent variable. The lambda coef-
ficient also varies between 0 and 1. A value of 0 means no improvement in prediction.
A value of 1 indicates that the prediction can be made without error. This happens
when each independent variable category is associated with a single category of the
dependent variable.

Asymmetric lambda is computed for each of the variables (treating it as the
dependent variable). The two asymmetric lambdas are likely to be different, since the
marginal distributions are not usually the same. A symmetric lambda, a kind of aver-
age of the two asymmetric values, is also computed. The symmetric lambda does not
make an assumption about which variable is dependent. It measures the overall
improvement when prediction is done in both directions.12

Other statistics

Note that in the calculation of the chi-square statistic the variables are treated as
being measured only on a nominal scale. Other statistics such as tau b, tau c, and
gamma are available to measure association between two ordinal-level variables. All
these statistics use information about the ordering of categories of variables by con-
sidering every possible pair of cases in the table. Each pair is examined to determine
whether its relative ordering on the first variable is the same as its relative ordering on
the second variable (concordant), the ordering is reversed (discordant), or the pair is
tied. The manner in which the ties are treated is the basic difference between these
statistics. Both tau b and tau c adjust for ties. Tau b is the most appropriate with
square tables in which the number of rows and the number of columns are equal. Its
value varies between +1 and –1. For a rectangular table in which the number of rows
is different from the number of columns, tau c should be used. Gamma does not
make an adjustment for either ties or table size. Gamma also varies between +1 and
–1 and generally has a higher numerical value than tau b or tau c. Other statistics for
measuring the strength of association, namely product moment correlation and non-
metric correlation, are discussed in Chapter 20.

Cross-tabulation in practice

While conducting cross-tabulation analysis in practice, it is useful to proceed through
the following steps.

■ Test the null hypothesis that there is no association between the variables using
the chi-square statistic. If you fail to reject the null hypothesis, then there is no
relationship.

15.8/972––––––––
8

χ2/n
––––––––––––––––
min (r – 1), (c – 1)
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Symmetric lambda

The symmetric lambda does

not make an assumption

about which variable is

dependent. It measures the

overall improvement when

prediction is done in both

directions.

tau b

A test statistic that measures

the association between two

ordinal-level variables. It

makes an adjustment for ties

and is the most appropriate

when the table of variables is

square.

tau c

A test statistic that measures

the association between two

ordinal-level variables. It

makes an adjustment for ties

and is most appropriate when

the table of variables is not

square but a rectangle.

Gamma

A test statistic that measures

the association between two

ordinal-level variables. It does

not make an adjustment for

ties.

Asymmetric lambda

A measure of the percentage

improvement in predicting the

value of the dependent

variable given the value of the

independent variable in

contingency table analysis.

Lambda also varies between 0

and 1.



 

■ If H0 is rejected, then determine the strength of the association using an appropri-
ate statistic (phi coefficient, contingency coefficient, Cramer’s V, lambda
coefficient, or other statistics), as discussed earlier.

■ If H0 is rejected, interpret the pattern of the relationship by computing the per-
centages in the direction of the independent variable, across the dependent
variable.

■ If the variables are treated as ordinal rather than nominal, use tau b, tau c, or
gamma as the test statistic. If H0 is rejected, then determine the strength of the
association using the magnitude, and the direction of the relationship using the
sign of the test statistic.

Hypothesis testing related to differences

The previous section considered hypothesis testing related to associations. We now
focus on hypothesis testing related to differences. A classification of hypothesis testing
procedures for examining differences is presented in Figure 18.9. Note that this figure
is consistent with the classification of univariate techniques presented in Figure 17.4.

Hypothesis testing procedures can be broadly classified as parametric or non-para-
metric, based on the measurement scale of the variables involved. Parametric tests

assume that the variables of interest are measured on at least an interval scale. The
most popular parametric test is the t test conducted for examining hypotheses about
means. The t test could be conducted on the mean of one sample or two samples of
observations. In the case of two samples, the samples could be independent or paired.

Non-parametric tests assume that the variables are measured on a nominal or
ordinal scale. These tests can be further classified based on whether one or two or
more samples are involved.

Non-parametric tests based on observations drawn from one sample include the
chi-square test, the Kolmogorov-Smirnov test, the runs test and the binomial test. In
the case of two independent samples, the chi-square test, the Mann-Whitney U test,
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Parametric tests

Hypothesis testing procedures

that assume that the variables

of interest are measured on at

least an interval scale.

Non-parametric tests

Hypothesis testing procedures

that assume that the variables

are measured on a nominal or

ordinal scale.

Parametric tests

(metric data)

Non-parametric tests

(Non-metric data)

Hypothesis tests

One sample Two

samples

One sample Two

samples
• Chi-square

• K-S

• Runs

• Binomial

• t test

• z test

Independent

samples

Paired

samples

Independent

samples

Paired

samples

• Chi-square

• Mann-Whitney

• Median

• K-S

• Two group

t test

• z test

• Sign

• Wilcoxon

• McNemar

• Chi-square

• Paired t test

Figure 18.9

Hypothesis testing

procedures



 

the median test and the Kolmogorov-Smirnov two-sample test are used. These tests
are non-parametric counterparts of the two-group t test. For paired samples, non-
parametric tests include the sign test, the Wilcoxon matched-pairs signed-ranks test,
the McNemar test and the chi-square test. These tests are the counterparts of the
paired t test. As explained in Chapter 17, the number of samples is determined based
on how the data are treated for the purpose of analysis, not based on how the data
were collected. The samples are independent if they are drawn randomly from differ-
ent populations. For the purpose of analysis, data pertaining to different groups of
respondents, for example males and females, are generally treated as independent
samples. On the other hand, the samples are paired when the data for the two samples
relate to the same group of respondents.

Parametric as well as non-parametric tests are also available for evaluating
hypotheses relating to more than two samples. These tests are considered in later
chapters.

Parametric tests

Parametric tests provide inferences for making statements about the means of parent
populations. A t test is commonly used for this purpose. This test is based on the
Student’s t statistic. The t statistic assumes that the variable is normally distributed
and the mean is known (or assumed to be known) and the population variance is
estimated from the sample. Assume that the random variable X is normally distrib-
uted, with mean µ and unknown population variance σ2, which is estimated by the
sample variance s2. Recall that the standard deviation of the sample mean, X

–
, is esti-

mated as sx– = s/ n. Then t = (X
–

– µ) /sx– is t distributed with n – 1 degrees of freedom.
The t distribution is similar to the normal distribution in appearance. Both distri-

butions are bell-shaped and symmetric. Compared with the normal distribution,
however, the t distribution has more area in the tails and less in the centre. This is
because the population variance σ2 is unknown and is estimated by the sample vari-
ance s 2. Given the uncertainty in the value of s2, the observed values of t are more
variable than those of z. Thus, we must go out a larger number of standard deviations
from zero to encompass a certain percentage of values from the t distribution than is
the case with the normal distribution. Yet, as the number of degrees of freedom
increases, the t distribution approaches the normal distribution. In fact, for large sam-
ples of 120 or more, the t distribution and the normal distribution are virtually
indistinguishable. Table 4 in the Statistical Appendix shows selected percentiles of the
t distribution. Although normality is assumed, the t test is quite robust to departures
from normality.

The procedure for hypothesis testing, for the special case when the t statistic is
used, is as follows.

1 Formulate the null (H0) and the alternative (H1) hypotheses.
2 Select the appropriate formula for the t statistic.
3 Select a significance level, α, for testing H0. Typically, the 0.05 level is selected.13

4 Take one or two samples and compute the mean and standard deviation for each
sample.

5 Calculate the t statistic assuming that H0 is true.
6 Calculate the degrees of freedom and estimate the probability of getting a more

extreme value of the statistic from Table 4 in the Statistical Appendix.
(Alternatively, calculate the critical value of the t statistic.)

7 If the probability computed in step 6 is smaller than the significance level selected in
step 3, reject H0. If the probability is larger, do not reject H0. (Alternatively, if the
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t test

A univariate hypothesis test

using the t distribution, which

is used when the standard

deviation is unknown and the

sample size is small.

t statistic

A statistic that assumes that

the variable has a symmetric

bell-shaped distribution, that

the mean is known (or

assumed to be known), and

that the population variance is

estimated from the sample.

t distribution

A symmetrical bell-shaped

distribution that is useful for

sample testing (n<30). It is

similar to the normal

distribution in appearance.



 

value of the calculated t statistic in step 5 is larger than the critical value determined
in step 6, reject H0. If the calculated value is smaller than the critical value, do not
reject H0.) Failure to reject H0 does not necessarily imply that H0 is true. It only
means that the true state is not significantly different from that assumed by H0.14

8 Express the conclusion reached by the t test in terms of the marketing research
problem.

We illustrate the general procedure for conducting t tests in the following sections,
beginning with the one-sample case.

One sample

In marketing research, the researcher is often interested in making statements about a
single variable against a known or given standard. Examples of such statements are that
the market share for a new product will exceed 15%, at least 65% of customers will like
a new package design, and 80% of retailers will prefer a new pricing policy. These state-
ments can be translated to null hypotheses that can be tested using a one-sample test,
such as the t test or the z test. In the case of a t test for a single mean, the researcher is
interested in testing whether the population mean conforms to a given hypothesis (H0).
Suppose that a new machine attachment would be introduced if it receives a mean of at
least 7 on a 10-point scale (where 0 = dreadful addition to machine, and 10 = exem-
plary addition to machine). A sample of 20 engineers is shown the attachment and
asked to evaluate it. The results indicate a mean rating of 7.9 with a standard deviation
of 1.6. A significance level of α = 0.05 is selected. Should the part be introduced?

H0: µ ≤ 7.0
H1: µ > 7.0

t =

sx– =

sx– =          =             = 0.358

t =                 =            = 2.514

The degrees of freedom for the t statistic to test the hypothesis about one mean are
n – 1. In this case, n – 1 = 20 – 1, or 19. From Table 4 in the Statistical Appendix, the
probability of getting a more extreme value than 2.514 is less than 0.05. (Alternatively,
the critical t value for 19 degrees of freedom and a significance level of 0.05 is 1.7291,
which is less than the calculated value.) Hence, the null hypothesis is rejected, favour-
ing the introduction of the part.

Note that if the population standard deviation was assumed to be known as 1.5,
rather than estimated from the sample, a z test would be appropriate. In this case, the
value of the z statistic would be

X
–

– µ
z = –––––

σx–

where

1.5 1.5
σx– = ––– = ––––– = 0.335

20 4.472

0.9–––––
0.358

7.9 –7.0–––––––
0.358

1.6–––––
4.472

1.6––––
20

s –––
n

X
–

– µ–––––sx–
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z test

A univariate hypothesis test

using the standard normal

distribution.



 

and

7.9 – 7.0 0.9
z = –––––––– = ––––– = 2.687

0.335 0.335

From Table 2 in the Statistical Appendix, the probability of getting a more extreme
value of z than 2.687 is less than 0.05. (Alternatively, the critical z value for a one-
tailed test and a significance level of 0.05 is 1.645, which is less than the calculated
value.) Therefore, the null hypothesis is rejected, reaching the same conclusion
arrived at earlier by the t test.

The procedure for testing a null hypothesis with respect to a proportion was illus-
trated earlier in this chapter when we introduced hypothesis testing.

Two independent samples

Several hypotheses in marketing relate to parameters from two different populations:
for example, the users and non-users of a brand differ in terms of their perceptions of
the brand, the high-income consumers spend more on leisure activities than low-
income consumers, or the proportion of brand-loyal users in segment I is more than
the proportion in segment II. Samples drawn randomly from different populations
are termed independent samples. As in the case for one sample, the hypotheses could
relate to means or proportions.

Means. In the case of means for two independent samples, the hypotheses take the
following form:

H0: µ1 = µ2

H1: µ1 ≠ µ2

The two populations are sampled and the means and variances are computed based
on samples of sizes nl and n2. If both populations are found to have the same variance,
a pooled variance estimate is computed from the two sample variances as follows:

n1 n2

Σ (Xi1
– X

–
1)2 + Σ (Xi2

– X
–

2)2

i=1                                 i=1
s2 = ––––––––––––––––––––––––––

n1 + n2 – 2

The standard deviation of the test statistic can be estimated as

1 1   
sX

–
1 – X

–
2 
=    s2(–– + –– )n1 n2

The appropriate value of t can be calculated as

(X
–

1 – X
–

2) – (µ1 – µ2)
t = ––––––––––––––––––

sX
–

1 – X
–

2

The degrees of freedom in this case are (n1 + n2 – 2).
If the two populations have unequal variances, an exact t cannot be computed for

the difference in sample means. Instead, an approximation to t is computed. The
number of degrees of freedom in this case is usually not an integer, but a reasonably
accurate probability can be obtained by rounding to the nearest integer.15

An F test of sample variance may be performed if it is not known whether the two
populations have equal variance. In this case the hypotheses are:

H0: σ1
2 = µ2

2

H1: σ1
2 / µ2

2
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Independent samples

Two samples that are not

experimentally related. The

measurement of one sample

has no effect on the values of

the second sample.

F test

A statistical test of the

equality of the variances of

two populations.



 

The F statistic is computed from the sample variances as follows:

s1
2

F(n1–1),(n2–1) = –––
s2

2

where n1 = size of sample 1

n2 = size of sample 2

n1 – 1 = degrees of freedom for sample 1

n2 – 1 = degrees of freedom for sample 2

s1
2 = sample variance for sample 1

s2
2 = sample variance for sample 2.

As can be seen, the critical value of the F distribution depends on two sets of degrees
of freedom: those in the numerator and those in the denominator. The critical values
of F for various degrees of freedom for the numerator and denominator are given in
Table 5 of the Statistical Appendix. If the probability of F is greater than the signifi-
cance level α, H0 is not rejected and t based on the pooled variance estimate can be
used. On the other hand, if the probability of F is less than or equal to α, H0 is rejected
and t based on a separate variance estimate is used. We illustrate this using the
GlobalCash example.

Electronic banking security

Suppose that decision-makers wanted to understand whether respondents from Germany and

the Netherlands who use Citibank for pan-European transactions prefer ‘security’ to other

functions that need to be improved in their electronic banking. 

A two independent samples t test was conducted, and the results are presented in Table

18.13. Note that the F test of sample variances has a probability that exceeds 0.05.

Accordingly, H
0

cannot be rejected, and the t test based on the pooled variance estimate

should be used. The t value is –1.99, and with 265 degrees of freedom this gives a probabil-

ity of 0.048, which is less than the significance level of 0.05. Therefore, the null hypothesis

of equal means is rejected. Since the mean importance of ‘user friendliness’ for German

companies is 3.9778 and for Dutch companies is 4.3712, Dutch companies (who use

Citibank for pan-European transactions) attach significantly greater importance to ‘security’

when seeking improvements to electronic banking functions than German companies. ■
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F statistic

The ratio of two sample

variances.

F distribution

A frequency distribution that

depends upon two sets of

degrees of freedom: the

degrees of freedom in the

numerator and the degrees of

freedom in the denominator.
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GlobalCash Project

Summary statistics

Number of cases Mean Standard deviation

German companies 135 3.9778 1.604

Dutch companies 132 4.3712 1.627

F test for equality of variances

F value Two-tail probability

1.03 0.871

t test

Pooled variance estimate Separate variance estimate

t value Degrees of Two-tail t value Degrees of Two-tail

freedom probability freedom probability

–1.99 265 0.048 –1.99 264.65 0.048

Table 18.13 Two independent samples t test



 

We also show the t test using a separate variance estimate, since most computer
programs automatically conduct the t test both ways. As an application of the t test,
consider the following example.

Shops seek to suit elderly to a ‘t’16

A study based on a sample of 789 respondents who were 65 or older attempted to deter-

mine the effect of lack of mobility on shop patronage. A major research question related to

the differences in the physical requirements of dependent and self-reliant elderly persons.

That is, did the two groups require different things to get to the shop or after they arrived at

the shop? A more detailed analysis of the physical requirements conducted by the t tests of

two independent samples (shown in the table) indicated that dependent elderly persons are

more likely to look for shops that offer home delivery and phone orders and for shops to

which they have accessible transportation. They are also more likely to look for a variety of

shops located close together. ■

In this example, we tested the difference between means. A similar test is available
for testing the difference between proportions for two independent samples.

Proportions. A case involving proportions for two independent samples is illustrated
in Table 18.14, which gives the number of companies (employing more than 5,000)
that have their own ‘in-house’ banks in Germany and France.

Is the proportion the same in the German and French samples? The null and alter-
native hypotheses are:

H0: π1 = π2

H1: π1 ≠ π2
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473

e x a m p l e

Physical requirement items Mean*

Self-reliant Dependent t test probability

Delivery to home 1.787 2.000 0.023

Phone in order 2.030 2.335 0.003

Transportation to store 2.188 3.098 0.000

Convenient parking 4.001 4.095 0.305

Location close to home 3.177 3.325 0.137

Variety of shops close together 3.456 3.681 0.023

Differences in physical requirements between dependent and self-reliant elderly

* Measured on a five-point scale from not important (1) to very important (5)

Sample Use an ‘in-house’ bank

Have an Do not have an Row totals

‘in-house’ bank ‘in-house’ bank

Germany 160 40 200

France 120 80 200

Column totals 280 120

Table 18.14 Comparing the proportions of German and French companies that have an

‘in-house’ bank



 

A z test is used as in testing the proportion for one sample. In this case, however, the
test statistic is given by

P1 – P2z = ––––––
sP

–
1

– P–2

In the test statistic, the numerator is the difference between the proportions in the
two samples, P1 and P2. The denominator is the standard error of the difference in the
two proportions and is given by

where

n1P1 + n2P2
P = ––––––––––

n1 + n2

A significance level of α = 0.05 is selected. Given the data in Table 18.14, the test sta-
tistic can be calculated as

P1 – P2 = 0.8 – 0.6 = 0.2

Given a two-tail test, the area to the right of the critical value is α/2, or 0.025. Hence,
the critical value of the test statistic is 1.96. Since the calculated value exceeds the crit-
ical value, the null hypothesis is rejected. Thus, the proportion of companies with
‘in-house’ banks (80% for German companies and 60% for French companies) is sig-
nificantly different for the two samples.

Paired samples

In many marketing research applications, the observations for the two groups are not
selected from independent samples. Rather, the observations relate to paired samples
in that the two sets of observations relate to the same respondents. A sample of
respondents may rate competing brands, may indicate the relative importance of two
attributes of a product, or may evaluate a brand at two different times. The differ-
ences in these cases are examined by a paired samples t test. To compute t for paired
samples, the paired difference variable, denoted by D, is formed and its mean and
variance calculated. Then the t statistic is computed. The degrees of freedom are n – 1,
where n is the number of pairs. The relevant formulas are

H0: µD = 0

H1: µD ≠ 0

D – µD
tn – 1 = ––––––

sD

0.2
z = ––––––– = 4.36

0.04583

1 1
sP

–
1 – P

–
2
=    0.7 × 0.3 (––– + ––– ) = 0.04583

200 200

200 × 0.8 + 200 × 0.6
P = –––––––––––––––––––  = 0.7

200 + 200

1 1sP
–

1 – P
–

2
=    P(1 – P) (––– + ––– )n1 n2 
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Paired samples t test

A test for differences in the

means of paired samples.

Paired samples

In hypothesis testing, the

observations are paired so

that the two sets of

observations relate to the

same respondents.

–

___
n



 

where

The following example illustrates an application of a paired samples t test.

Seconds count17

A survey of 83 media directors of advertising agencies was conducted to determine the rela-

tive effectiveness of 15-second versus 30-second commercial advertisements. By use of a

five-point rating scale (1 being excellent and 5 being poor), 15- and 30-second commercials

were rated by each respondent for brand awareness, main idea recall, persuasion, and ability

to tell an emotional story. The table indicates that 30-second commercials were rated more

favourably on all the dimensions. Paired t tests indicated that these differences were signifi-

cant, and the 15-second commercials were evaluated as less effective. ■

The difference in proportions for paired samples can be tested by using the
McNemar test or the chi-square test, as explained in the following section on non-
parametric tests.

Non-parametric tests

Non-parametric tests are used when the variables are non-metric. Like parametric
tests, non-parametric tests are available for testing variables from one sample, two
independent samples, or two related samples.

One sample

Sometimes the researcher wants to test whether the observations for a particular vari-
able could reasonably have come from a particular distribution, such as the normal,
uniform or Poisson distribution. Knowledge of the distribution is necessary for find-
ing probabilities corresponding to known values of the variable, or variable values
corresponding to known probabilities (see Appendix 15A). The Kolmogorov-

Smirnov (K-S) one-sample test is one such goodness-of-fit test. The K-S compares
the cumulative distribution function for a variable with a specified distribution. Ai

denotes the cumulative relative frequency for each category of the theoretical
(assumed) distribution, and Oi denotes the comparable value of the sample fre-
quency. The K-S test is based on the maximum value of the absolute difference
between Ai and Oi. The test statistic is

K = max | Ai – Oi |

n

Σ (Di – D
–

)2

i=1sD =    –––––––––––
n – 1

n

Σ Dii=1D
–

= –––––
n
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Brand awareness             Main idea recall Persuasion Ability to tell an

emotional story

15 30 15 30 15 30 15 30

2.5 1.9 2.7 2.0 3.7 2.1 4.3 1.9

Mean rating of 15- and 30-second commercials on four communication variables

Kolmogorov-Smirnov (K-S)

one-sample test

A one-sample non-parametric

goodness-of-fit test that

compares the cumulative

distribution function for a

variable with a specified

distribution.



 

The decision to reject the null hypothesis is based on the value of K. The larger K is,
the more confidence we have that H0 is false. Note that this is a one-tailed test, since
the value of K is always positive, and we reject H0 for large values of K. For α = 0.05,
the critical value of K for large samples (over 35) is given by 1.36/√n.18 Alternatively,
K can be transformed into a normally distributed z statistic and its associated proba-
bility determined.

Security deviates from the normal

Suppose that one wanted to test whether the distribution of the importance attached to

‘security’ in electronic banking functions was normal. A K-S one-sample test is conducted,

yielding the data shown in Table 18.15.

The largest absolute difference between the observed and normal distribution was K =

0.1975. The critical value for K is 1.36/√271 = 0.083. Since the calculated value of K is

larger than the critical value, the null hypothesis is rejected. Alternatively, Table 18.15 indi-

cates that the probability of observing a K value of 0.1975, as determined by the normalised

z statistic, is less than 0.001. Since this is less than the significance level of 0.05, the null

hypothesis is rejected, leading to the same conclusion. Hence, the distribution of the impor-

tance attached to ‘security’ deviates significantly from the normal distribution. ■

As mentioned earlier, the chi-square test can also be performed on a single variable
from one sample. In this context, the chi-square serves as a goodness-of-fit test. It
tests whether a significant difference exists between the observed number of cases in
each category and the expected number.

Other one-sample non-parametric tests include the runs test and the binomial

test. The runs test is a test of randomness for the dichotomous variables. This test is
conducted by determining whether the order or sequence in which observations are
obtained is random. The binomial test is also a goodness-of-fit test for dichotomous
variables. It tests the goodness of fit of the observed number of observations in each
category to the number expected under a specified binomial distribution. For more
information on these tests, refer to standard statistical literature.19

Two independent samples

When the difference in the location of two populations is to be compared based on
observations from two independent samples and the variable is measured on an ordi-
nal scale, the Mann-Whitney U test can be used.20 This test corresponds to the two
independent sample t test, for interval scale variables, when the variances of the two
populations are assumed equal.

In the Mann-Whitney U test, the two samples are combined and the cases are
ranked in order of increasing size. The test statistic, U, is computed as the number of
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Mann-Whitney U test 

A statistical test for a variable

measured on an ordinal scale,

comparing the differences in

the location of two

populations based on

observations from two

independent samples.

Runs test

A test of randomness for a

dichotomous variable.

Binominal test

A goodness-of-fit statistical

test for dichotomous

variables. It tests the

goodness of fit of the

observed number of

observations in each category

to the number expected under

a specified binominal

distribution.
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GlobalCash Project

Test distribution, normal

Mean 4.19

Standard deviation 1.62

Cases 271

Table 18.15 K-S one-sample test for normality

Most extreme differences

Absolute Positive Negative K-S z Two-tailed p

0.19754 0.13150 –0.19754 3.253 0.000



 

times a score from sample or group 1 precedes a score from group 2. If the samples
are from the same population, the distribution of scores from the two groups in the
rank list should be random. An extreme value of U would indicate a non-random
pattern pointing to the inequality of the two groups. For samples of less than 30, the
exact significance level for U is computed. For larger samples, U is transformed into a
normally distributed z statistic. This z can be corrected for ties within ranks.

The Dutch seek more security

Since the distribution of importance attached to ‘security’ was determined to be non-normal, it

is appropriate to examine again whether German companies attach different importance to

Dutch companies in their views of electronic banking security. This time, though, the Mann-

Whitney U test is used. The results are given in Table 18.16. Again, a significant difference is

found between the two groups, corroborating the results of the two independent samples t test

reported earlier. Since the ranks are assigned from the smallest observation to the largest, the

higher mean rank (144.39) of Dutch respondents indicates that they attach greater importance

to electronic banking security than German respondents (mean rank = 123.84). ■

Researchers often wish to test for a significant difference in proportions obtained
from two independent samples. In this case, as an alternative to the parametric z test
considered earlier, one could also use the cross-tabulation procedure to conduct a chi-
square test.21 In this case, we will have a 2 × 2 table. One variable will be used to
denote the sample and will assume a value of 1 for sample 1 and a value of 2 for
sample 2. The other variable will be the binary variable of interest.

Two other independent-samples non-parametric tests are the median test and
Kolmogorov-Smirnov test. The two-sample median test determines whether the two
groups are drawn from populations with the same median. It is not as powerful as the
Mann-Whitney U test because it merely uses the location of each observation relative
to the median, and not the rank, of each observation. The Kolmogorov-Smirnov
(K-S) two-sample test examines whether the two distributions are the same. It takes
into account any differences between the two distributions, including the median,
dispersion and skewness, as illustrated by the following example.

Directors change direction22

How do marketing research directors and users in Fortune 500 manufacturing firms perceive

the role of marketing research in initiating changes in marketing strategy formulation? It was

found that the marketing research directors were more strongly in favour of initiating changes

in strategy and less in favour of holding back than were users of marketing research. Using

the Kolmogorov-Smirnov test, these differences of role definition were statistically significant

at the 0.05 level, as shown overleaf. ■
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Two-sample median test

Non-parametric test statistic

that determines whether two

groups are drawn from

populations with the same

median. This is not as powerful

as the Mann-Whitney U.

Kolmogorov-Smirnov (K-S)

two-sample test

Non-parametric test statistic

that determines whether two

distributions are the same. It

takes into account any

differences in the two

distributions, including

median, dispersion and

skewness.
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GlobalCash Project

Mean rank Cases

123.84 135 Germany = 1.00

144.39 132 Netherlands = 2.00

267 Total

Table 18.16 Mann-Whitney U Wilcoxon rank sum W test: importance of electronic banking

security

U W z Corrected for ties,

two-tailed p

7538.00 19060.00 –2.2219 0.0263

Note: U = Mann-Whitney test statistics, W = Wilcoxon W statistic, z = U transformed into a normally distributed z statistic.

e x a m p l e



 
In this example, the marketing research directors and users comprised two inde-

pendent samples. The samples, however, are not always independent. In the case of
paired samples, a different set of tests should be used.

Paired samples

An important non-parametric test for examining differences in the location of two
populations based on paired observations is the Wilcoxon matched-pairs signed-

ranks test. This test analyses the differences between the paired observations, taking
into account the magnitude of the differences. It computes the differences between
the pairs of variables and ranks the absolute differences. The next step is to sum the
positive and negative ranks. The test statistic, z, is computed from the positive and
negative rank sums. Under the null hypothesis of no difference, z is a standard normal
variate with mean 0 and variance 1 for large samples. This test corresponds to the
paired t test considered earlier.23

User friendliness more important than security

Respondents were asked to rank the importance of electronic banking criteria such as ‘secu-

rity’ and ‘user friendliness’. As these were measured on ordinal rather than interval scales, we

used the Wilcoxon test. The results are shown in Table 18.17 where a significant difference is

found in the variables. There are 177 negative differences (importance attached to security is
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Wilcoxon matched-pairs

signed-ranks test

A non-parametric test that

analyses the differences

between the paired

observations, taking into

account the magnitude of the

differences.

Stage/item Responses (%) Kolmogorov-Smirnov test

Strategy Sample n Absolutely Preferably May or Preferably Absolutely Significance

formulation must should may not should not must not

‘Initiate change D 77 7 26 43 19 5

in the marketing 

strategy of the firm

whenever possible’ U 68 2 15 32 35 16 0.05

The role of marketing research in strategy formulation

D = directors, U = users.

There’s always

someone who doesn’t

quite understand that

a pair means two.

e x a m p l e

GlobalCash Project



 

less than that attached to user friendliness). The mean rank of these negative differences is

99.88. On the other hand, there are only 14 positive differences (the importance attached to

security exceeds that of user friendliness). The mean rank of these differences is 46.89. There

are 80 ties, or observations with the same value for both variables. These numbers indicate

that user friendliness is more important than security. Furthermore, the probability associated

with the t statistic is less than 0.05, indicating that the difference is indeed significant. ■

Another paired sample non-parametric test is the sign test.24 This test is not as
powerful as the Wilcoxon matched-pairs signed-ranks test because it only compares
the signs of the differences between pairs of variables without taking into account the
magnitude of the differences. In the special case of a binary variable where the
researcher wishes to test differences in proportions, the McNemar test can be used.
Alternatively, the chi-square test can also be used for binary variables.

The various parametric and non-parametric tests are summarised in Table
18.18.The tests in Table 18.18 can be easily related to those in Figure 18.9. Table 18.18
classifies the tests in more detail, as parametric tests (based on metric data) are classi-
fied separately for means and proportions. Likewise, non-parametric tests (based on
non-metric data) are classified separately for distributions and rankings/medians.

Non-parametric tests
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Sign test

A non-parametric test for

examining differences in the

location of two populations,

based on paired populations,

that compares only the signs

of the differences between

pairs of variables without

taking into account the

magnitude of the differences.

Security with user friendliness

Security–user friendliness Cases Mean rank

– Ranks 177 99.88

+ Ranks 14 46.89

Ties 80

Total 271

z = –11.1262 Two-tailed p = 0.000

Table 18.17 Wilcoxon matched pairs signed-ranks test

Sample Application Level of scaling Test/comments

One sample

One sample Distributions Non-metric K-S and chi-square for goodness of fit

Runs test for randomness

Binomial test for goodness of fit for dichotomous 

variables

One sample Means Metric t test, if variance is unknown

z test, if variance is known

One sample Proportions Metric z test

Two independent samples

Two independent samples Distributions Non-metric K-S two-sample test for examining equivalence of 

two distributions

Two independent samples Means Metric Two-group t test

F test for equality of variances

Two independent samples Proportions Metric z test

Non-metric Chi-square test

Two independent samples Rankings/medians Non-metric Mann-Whitney U test more powerful than median test

Table 18.18 A summary of hypothesis testing

▲
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Paired samples Applications Level of scaling Test/comments

Paired samples Means Metric Paired t test

Paired samples Proportions Non-metric McNemar test for binary variables

Chi-square test

Paired samples Rankings/medians Non-metric Wilcoxon matched pairs ranked-signs test more 

powerful than sign test

In ternet  and computer  app l icat ions

SPSS (www.spss.com)

The main program in SPSS is FREQUENCIES. It produces a table of frequency
counts, percentages and cumulative percentages for the values of each variable. It
gives all of the associated statistics except for the coefficient of variation. If the data
are interval scaled and only the summary statistics are desired, the DESCRIPTIVES
procedure can be used. All of the statistics computed by DESCRIPTIVES are avail-
able in FREQUENCIES. However, DESCRIPTIVES is more efficient because it does
not sort values into a frequency table. An additional program, MEANS, computes
means and standard deviations for a dependent variable over subgroups of cases
defined by independent variables.

CROSSTABS displays cross-classification tables and provides cell counts, row and
column percentages, the chi-square test for significance, and all the measures of the
strength of the association that have been discussed. The major program for con-
ducting t tests is T-TEST. This program can be used to conduct t tests on
independent as well as paired samples. All the non-parametric tests that we have
discussed can be conducted by using the NPAR TESTS program.

SAS (www.sas.com)

The main program is UNIVARIATE. In addition to providing a frequency table, this
program provides all the associated statistics. Another procedure available is FREQ.
For one-way frequency distribution, FREQ does not provide any associated statis-
tics. If only summary statistics are desired, procedures such as MEANS, SUMMARY
and TABULATE can be used.

FREQ displays cross-classification tables and provides cell counts, row and
column percentages, the chi-square test for significance, and all the measures of the
strength of the association that have been discussed. TABULATE can be used for
obtaining cell counts and row and column percentages, although it does not pro-
vide any of the associated statistics. The program T-TEST can be used. The
non-parametric tests may be conducted by using NPAR1WAY. This program will
conduct the two independent samples test (Mann-Whitney, median and K-S) as well
as the Wilcoxon test for paired samples.

Minitab (www.minitab.com)

The main function is Stats>Descriptive Statistics. The output values include the
mean, median, mode, standard deviation, minimum, maximum and quartiles. A
histogram in a bar chart or graph can be produced from the Graph>Histogram
selection. Cross-tabulations (crosstabs) and chi-square are under the Stats>Tables
function. Each of these features must be selected separately under the Tables func-
tion. Parametric tests available in Minitab in descriptive stat function are z test for

Table 18.18 continued



 

Summary

Basic data analysis provides valuable insights and guides the rest of the data analysis
as well as the interpretation of the results. A frequency distribution should be
obtained for each variable in the data. This analysis produces a table of frequency
counts, percentages and cumulative percentages for all the values associated with that
variable. It indicates the extent of out-of-range, missing or extreme values. The mean,
mode and median of a frequency distribution are measures of central tendency. The
variability of the distribution is described by the range, the variance or standard devi-
ation, coefficient of variation and interquartile range. Skewness and kurtosis provide
an idea of the shape of the distribution.

Cross-tabulations are tables that reflect the joint distribution of two or more vari-
ables. In cross-tabulation, the percentages can be computed either by column, based on
column totals, or by row, based on row totals. The general rule is to compute the per-

Summary
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means, t test for means, and two-sample t test. The non-parametric tests can be
accessed under the Stat>Time Series function. The output includes the one-sample
sign, one-sample Wilcoxon, Mann-Whitney, Kruskal-Wallis, median test, Friedman,
runs test and pairwise differences.

Excel (www.microsoft.com/catalog/)

In Excel the output produces the mean, standard error, median, mode, standard
deviation, variance, kurtosis, skewness, range, minimum, maximum, sum, count
and confidence level. Frequencies can be selected under the histogram function. A
histogram can be produced in bar format. The Data>Pivot Table performs crosstabs
in Excel. To do additional analysis or customise data, select a different summary
function such as max, min, average or standard deviation. In addition, a custom
calculation can be selected to calculate based on other cells in the data plane. The
chi-square test can be accessed under the Insert>Function>Statistical>ChiTest
function. The available parametric tests include the t test: paired samples for means;
t test: two independent samples assuming equal variances; t test: two independent
samples assuming unequal variances; z test: two samples for means; and F test for
variances of two samples.

Snap (www.snapsurveys.com)

In Snap, Descriptive Statistics produces the count, mean, mode, quartiles, median,
sum, minimum, maximum, range, standard error, standard deviation, variance,
skewness and kurtosis. In either Tables or Charts, the following can be produced
displaying absolute values, percentages or means:

■ A single question or several questions together
■ Comparing one question against another, or several questions against one or

more other questions (cross-tabulation)
■ Grids of a body of scaled items, e.g. a body of Likert scales
■ Holecount tables, i.e. a summary of all or any chosen responses to the

questionnaire
■ Summary results in counts or percentages in the format of the original

questionnaire.

Chi-square and t tests can be calculated using the Charts option.



 

centages in the direction of the independent variable, across the dependent variable.
Often the introduction of a third variable can provide additional insights. The chi-square
statistic provides a test of the statistical significance of the observed association in a
cross-tabulation. The phi coefficient, contingency coefficient, Cramer’s V and lambda
coefficient provide measures of the strength of association between the variables.

Parametric and non-parametric tests are available for testing hypotheses related to
differences. In the parametric case, the t test is used to examine hypotheses related to
the population mean. Different forms of the t test are suitable for testing hypotheses
based on one sample, two independent samples or paired samples. In the non-
parametric case, popular one-sample tests include the chi-square, Kolmogorov-
Smirnov and binomial tests. For two independent non-parametric samples, the
chi-square, Mann-Whitney U, median and Kolmogorov-Smirnov tests can be used.
For paired samples, the sign, Wilcoxon matched-pairs signed-ranks, McNemar and
chi-square tests are useful for examining hypotheses related to measures of location.
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1 Describe the procedure for computing frequencies.

2 What measures of location are commonly computed?

3 What measures of variability are commonly computed?

4 How is the relative flatness or peakedness of a distribution measured?

5 What is a skewed distribution? What does it mean?

6 What is the major difference between cross-tabulation and frequency distribution?

7 What is the general rule for computing percentages in cross-tabulation?

8 Define a spurious correlation.

9 What is meant by a suppressed association? How is it revealed?

10 Discuss the reasons for the frequent use of cross-tabulations. What are some of the

limitations?

11 Present a classification of hypothesis testing procedures.

12 Describe the general procedure for conducting a t test.

13 What is the major difference between parametric and non-parametric tests?

14 Which non-parametric tests are the counterparts of the two independent samples t

test for parametric data?

15 Which non-parametric tests are the counterparts of the paired samples t test for

parametric data?

Questions ?????
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